- 软件大小: 4.10MB
- 软件语言: 简体中文
- 软件类别: 国产软件 | 其它书籍
- 运行环境: Xp/Vista/Win7/Win8/WinAll
- 授权方式: 免费版
- 软件等级:
- 更新时间: 2017/9/12 15:12:23
- 开 发 商:
软件介绍:
高盛人工智能报告电子书下载 (2016高盛人工智能(AI)生态报告中英文版)高清电子版 PDF格式。高盛人工智能报告是高盛发布关于人工智能生态的报告,讲述了人工智能的行业动态和发展趋势,非常的具有权威性。小编带来了高盛人工智能报告pdf中文版和高盛人工智能报告英文原版pdf,适合不同需求的用户下载阅读。
高盛人工智能报告介绍:
高盛最新推出了一份讲解人工智能生态的重磅报告《高盛人工智能(AI)生态报告》(AI, Machine Learning and Data Fuel the Future of Productivity)(共99页)。报告从人工智能概念梳理开始,内容包括人工智能即将改变的行业、人工智能生态、应用案例、背后的主要驱动者(包括谷歌、亚马逊、英伟达、百度等科技巨头)等,并附有高盛调查得到的150多家人工智能与机器学习公司列表。
《2016高盛人工智能(AI)生态报告》目录
概要
什么是人工智能?
价值创造的主要驱动力
加强未来的生产率
人工智能和生产率悖论:采访 Jan Hatzius
生态系统:云服务,开源在未来的 AI 投资周期中的关键受益人
使用案例
农业、金融、医疗、零售、能源
驱动者
附录(业内公司列表)
披露附录
2016高盛人工智能(AI)生态报告内容摘要:
苹果在做什么?去年,苹果已经成为最活跃的人工智能公司收购商,比如 Vocal IQ, Perceptio, Emotient, Turi, 以及 Tuplejump。几乎同时收购了 Vocal IQ 和 Perceptio,公司请来了 Johnathan Cohen,当时还是英伟达 CUDA 库以及 GPU 加速软件项目的负责人。近期,据报道,公司请来 Ruslan Salakhutdinov 担任人工智能研究总监,这也标志着公司人工智能战略的转型。在此之前,公司最初人工智能成果之一是 Siri , 第一款嵌入移动技术的虚拟助手,2014 年,其语音识别技术被移入神经网络系统。
微软在做什么?CEO Satya Nadella 表示,微软正在大众化人工智能(democratizing AI)。公司的人工智能和研究团队(总人数大约 5 千多),关注改变人类体验和与机器的互动。微软已经积极地将新的、融合人工智能的功能嵌入公司核心服务中,并在对话计算(比如 Cortana)、自然语言处理(SwfitKey)等方面取得进展。公司正进一步打造基于 GPU 和 FPGA 的云(Azure),在公司所谓的更高水平的人工智能服务,比如语音识别、图片识别以及自然语言处理当中,为机器学习提供动力和速度。
Facebook 在做什么?Facebook 人工智能研究部门(FAIR,2013 年)的策略是在更广泛的研究社区背景下研发技术。这个团队以推进无监督表征学习(比如,观察世界、而不是借助人类算法干预,借助对抗网络进行学习)的进步而为众人所知。应用机器学习部门(AML)在 FAIR 之后成立,聚焦将研究应用到公司产品中,时间限制为月或季度(而不是年)。公司正将机器学习功能应用到各种垂直领域中,比如面部识别,机器翻译以及深度文本(DeepText)语言或文本学习。
Salesforce 在做什么?在 2014 年和 2015 年,Salesforce 开始解释自己的 Apex 开发平台如何可被用在 Salesforce1 云上完成机器学习任务。从此,该公司开始在人工智能上投入更多的资源,收购了多家人工智能公司,包括 Minhash、PredictionIO 和 MetaMind。在 9 月份,Salesforce 推出了 Einstein——一个面向多平台的基于人工智能的云计划。该计划专注于将人工智能融入销售云、市场云、服务云、社区云、IoT 云和 app 云。
英伟达在做什么?英伟达已经从之前电子游戏 GPU 生产商转型为机器学习应用硬件厂商。2015 年年底,公司表示,较之使用传统 CPU,使用了 GPU 神经网络的训练速度提升了 10 到 20 倍。尽管英特尔重金投入的 FPGA(作为 GPU 的替代产品)加入硬件市场角逐,但是,GPU 的机器学习应用能实现更加密集的训练。相对而言,FPGA 可以提供更快、计算密集程度更低的推理和任务;这说明市场会根据实际应用案例区分对待。过去五年,到 2016 年 6 月为止,英伟达所占 GPU 市场份额已经从二分之一上升到近四分之三。
英特尔在做什么?英特尔的战略比较独特,其使用的案例多种多样。2016 年年中,公司发布了第二代 Xeon Phi 产品系列,以其高性能计算(HPC)能力著称,它可以让人工智能扩展到更加大型的服务器网络和云端。在硬件不断进步的同时,公司也下重金投资 FPGA,这主要归功于其推理速度和灵活的可编程性。英特尔令人瞩目的收购包括 Nervana(深度学习),以及 Altera——该公司将 FPGA 的创新带入了英特尔。
Uber 在做什么?Uber 正在使用机器学习优化 UberX ETA 以及接送地点的准确性。为了实现这一点,需要数百万之前搭乘记录的数据点来探测常规交通模式,从而可以相应调整 ETA/接送地点。今年 9 月,Uber 展开了一个自动驾驶试点项目,地点位于匹兹堡,由来自 CMU 的研究人员(受雇于 Uber)负责该项目,很多大型汽车制造商业参与了进来。该公司还和沃尔沃达成了一项合作(金额 300 万美元),研发协作也为这个试点项目提供了机遇。不过,公司并不止步于小轿车。公司收购了一家自动卡车创业公司 Otto,今年十月在科罗拉多,公司试点快递了 5 万瓶啤酒。
IBM 在做什么?IBM 在全球有 3000 多名研究人员。过去十年,IBM 在认知计算上超过有 1400 项专利,下一代云上有 1200 项,在硅/纳米科学上有 7200 项专利。IBM Watson 利用自然语言处理机器学习技术识别模式,并提供在非结构数据上的洞见,据该公司表示这代表如今所有数据的 80%。其他 Watson 产品包括 Virtual Agent,一个响应分析的自动消费者服务体验;Explorer,这是一个分析并连接大量不同数据集的工具。
百度在做什么?百度的人工智能研究由百度大脑所推进。它包含 3 个元素:1)一个模拟人类神经网络的人工智能算法,有着在百十亿的样本上训练的大量参数;2)能在数十万台服务器与大量 GPU 集群上进行高性能计算(HPC)的运算能力。HPC 能容纳更多可扩展的深度学习算法。百度是首家宣布这种架构的公司,并正与 UCLA 合作;3)标记数据,借此技术,百度收集到了数以亿计的网页,包括百亿的视频/音频/图像内容碎片,还有数十亿的搜索请求和百亿的定位要求。为特定模型训练一台机器可能需要很高的(exaFLOPS 级)计算能力以及 4T 的数据。
关键字: 高盛人工智能报告